就爱来小说网

考场上的完美答卷(2/6)

r>    一气呵成。

    第五题,空间解析几何。求过点$(1,2,3)$且与平面$x+y+z=1$垂直的直线方程。

    方向向量即为平面法向量$(1,1,1)$,直线方程$\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{1}$。

    林澈写完这题时,考试才过去十五分钟。大部分同学还在做第二题。

    他放下笔,活动了一下手腕。窗外的阳光更亮了,照在试卷上有些反光。他侧过身,让阳光避开视线,这个动作引起了赵建国的注意。

    教授从讲台走下来,皮鞋底敲击瓷砖地面的声音在安静的教室里格外清晰。他先是在过道里慢慢巡视,经过林澈身边时,目光在几乎写满的试卷上停留了两秒。

    然后又绕回来。

    这次他停在林澈桌边,弯腰看他的答题纸。

    林澈能闻到教授身上淡淡的粉笔灰和旧书混合的味道。赵建国看了大概十秒钟,什么也没说,直起身继续巡视。但林澈注意到,教授走回讲台的步伐比刚才快了一些。

    第六题,级数收敛性。$\sum_{n=1}^{\infty}\frac{n!}{n^n}$

    用比值判别法,$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{(n+1)!}{(n+1)^{n+1}}\cdot\frac{n^n}{n!}=\lim_{n\to\infty}\frac{n+1}{n+1}\cdot(\frac{n}{n+1})^n=\frac{1}{e}0$,$g(x)$严格递增,$g(1)>g(0)=0$,即$e^{-1}f(1)>0$,$f(1)>0$,这有可能成立,不矛盾。

    所以不能直接证明。

    他闭上眼睛,深呼吸。考场上的空气混着纸墨和汗水的味道。前世那些熬夜复习的夜晚在脑中浮现——他在图书馆抄过这道题的答案,赵建国在黑板上讲过……

    构造函数$F(x)=e^{-x^2}f(x)$,然后……然后要用罗尔定理!因为$F(0)=0$,还需要另一个零点才能用罗尔定理。但题目只给了$f(0)=0$,没给$f(1)=0$。

    除非——

    林澈睁开眼睛。

    除非$f(1)$恰好等于某个值,使得$F(1)=F(0)$?不对,那太巧合了。

    他的目光落在试卷的题号上:“七、证明题(15分)”。记忆的闸门突然打开:前世考完后,赵建国在讲解时说:“这道题的关键是构造辅助函数$g(x)=e^{-x^2}f(x)$,然后对$g(x)$应用柯西中值定理,取另一个函数为$h(x)=e^{x^2}$……”

    对了!

    林澈几乎要拍桌子。他立刻在草稿纸上写:

    “构造函数$g(x)=e^{-x^2}f(x)$,$h(x)=e^{x^2}$。则$g(0)=0$,$h(0)=1$,且$g(x),h(x)$在$[0,1]$上满足柯西中值定理条件。故存在$\xi\in(0,1)$,使得

    $\frac{g(1)-g(0)}{h(1)-h(0)}=\frac{g'(\xi)}{h'(\xi)}$

    即$\frac{e^{-1}f(1)}{e-1}=\frac{e^{-\xi^2}[f'(\xi)-2\xi f(\xi)]}{2\xi e^{\xi^2}}$

    化简得$f'(\xi)-2\xi f(\xi)=\frac{2\-->>

本章未完,点击下一页继续阅读