就爱来小说网

2307章 有点东西!定制化生理天赋技术(5/10)

  阿美丽卡这边的实验室就是这么做的。

    他们可不是牙买加的运动实验室,纯粹是骗经费。

    这边虽然也骗经费,但是骗的同时还是能够做出成果和成绩。

    他们研究分析后认为——

    博尔特超长臂展赋予的上肢杠杆长度优势,结合曲臂姿态的角度设定,从起跑器蹬离瞬间就应该建立起与普通运动员截然不同的力传导路径。

    为0-10米启动后进入加速区的送髋动作提供了专属的力学支撑。

    从力矩的本质来看,手臂作为人体上肢的杠杆,其力学效能由杠杆长度与转动惯量共同决定。

    那么在在起跑阶段,手臂摆动属于绕肩关节的转动运动,转动惯量与转动半径的平方正相关。

    可对于博尔特而言,其臂展远超常规短跑选手,普通男子短跑运动员臂展多与身高接近,博尔特臂展则超出身高一大截。

    这意味着在直臂姿态下,他的手臂转动半径 r会远大于其他选手,转动惯量呈几何级数增长,驱动手臂摆动需要付出的肌肉收缩力将是普通选手的1.5倍以上。

    而曲臂姿态的核心价值,恰恰是针对他超长臂展的“降维适配”——将肘部弯曲角度锁定在90°左右时,手臂的转动半径被大幅缩短,相较于直臂姿态,转动半径缩减幅度可达40%,结合其臂展长度的基数优势,转动惯量的降低效果远超普通运动员。

    这一变化带来的直接效果是,博尔特无需为驱动超长手臂而额外消耗能量,仅需更小的肌肉收缩力,就能驱动手臂完成高频次、高幅度的摆动。

    而肌肉收缩力的节省,意味着更多能量可以精准分配到下肢的蹬伸与送髋动作中。

    这正是0-30米加速区,尤其是0-10米启动衔接加速阶段的关键能量分配逻辑。

    更关键的是。

    博尔特的超长臂展结合曲臂姿态。

    构建了普通运动员无法企及的“长杠杆-短半径”复合力学模型。普通运动员的曲臂摆动,更多是通过缩短半径降低能耗,而博尔特的曲臂摆动,则是在“缩短半径”的基础上,保留了上肢长杠杆的牵引力优势。

    当他的曲臂完成前摆时,超长前臂形成的长杠杆,能够将肩部肌肉的收缩力放大,转化为更强的向前牵引拉力。

    而90°的弯曲角度,又避免了长杠杆带来的转动惯量过高问题。

    这种复合力学模型,让他的上肢摆动不再是单纯的平衡动作,而是成为驱动送髋的“动力源”——这是身高臂展普通的运动员,即便模仿相同的曲臂角度,也无法复刻的力学优势。

    黑人的手臂本来就长,博尔特更是超过了身高超过二十厘米。

    简直是姚铭看了都要流泪。

    甚至还有报道称,其单侧臂长,从第七节脊椎骨到手腕,就达到了99厘米的离谱传闻。

    这就是无法复制的生理优势。

    你要是没这个天赋,你怎么做都做不到。

    这就是说每个人的生理差距所带来的运动模式不同。

    所以。

    从动力链传导的角度分析。

    人体短跑的动力链遵循“核心驱动-上下肢协同”的传导路径。

    起跑阶段的动力链始于下肢蹬离起跑器的地面反作用力,经由髋部、核心、肩部传递至上肢,形成一个闭环的力传导系统。

    对于身高1米96的博尔特而言,其身体重心高度远超普通运动员,起跑阶段的核心难题是如何在保持重心稳定的前提下,将地面反作用力高效传递至髋部,驱动送髋动作。

    而他的曲臂姿态,恰好针对这一难题提供了定制化解决方-->>

本章未完,点击下一页继续阅读